Keywords: Рost-infectious, SARS-CoV-2, demyelinating disease, multiple sclerosis, multiple encephalomyelitis, diagnosis, treatment


SARS-COV-2 is a neurotropic virus that can trigger a large-scale outbreak of neurological complications in the future. SARS-COV-2 virus has neuroinvasive and neurotropic properties allow it to enter the central nervous system (CNS) and infect neurons, accumulate in nervous tissue and promote the development of delayed neurodegenerative processes. Among the neurological complications of SARS-CoV-2 to date, we can distinguish a group of demyelinating lesions of the CNS. The paper describes two cases of severe COVID-19, which were accompanied by neurological disorders and multifocal white matter lesions on MRI, which may correspond to demyelinating CNS disease. Both cases may be a manifestation of an acute infectious demyelinating process associated with COVID-19, as the clinical picture was appropriate, and neuroimaging showed multifocal lesions of the white matter. Other clinical signs confi rming this diagnosis were previously confi rmed acute viral COVID-19 infection and the absence of a history of demyelinating diseases such as multiple sclerosis in both patients. Monitoring such patients can help to understand better and identify factors in the early stages of the disease and to predict its progression. In the future, it will also allow the development of eff ective treatment strategies and the ability to reduce the risk of demyelinating process or its progression during SARS-CoV-2 infection.


Download data is not yet available.


Subbarao K, Mahanty S. Respiratory Virus Infections: Understanding COVID-19. Immunity. 2020 Jun 16;52(6):905-909. DOI: 10.1016/j.immuni.2020.05.004.

Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, et al. Complex Immune Dysregulationin COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3. DOI: 10.1016/j.chom.2020.04.009.

Liotta EM, Batra A, Clark JR, Shlobin NA, Hoffman SC, Orban ZS, et al. Frequent Neurologic Manifestations and Encephalopathy-Associated Morbidityin Covid-19 Patients. Ann Clin Trans Neurol. 2020;7(11):2221- 30. DOI: 10.1002/acn3.5121.

Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020 Jun 1;77(6):683-690. DOI: 10.1001/ jamaneurol.2020.1127.

McCuddy M, Kelkar P, Zhao Yu, Wicklund D. Acute Demyelinating Encephalomyelitis (ADEM) in COVID-19 Infection: A Case Series. Neurol India. Sep-Oct 2020;68(5):1192-1195. DOI: 10.4103/0028-3886.299174.

Ismail II, Salama S. Association of CNS demyelination and COVID-19 infection: an updated systematic review. J Neurol. 2021 Aug 12:1-36. DOI: 10.1007/s00415-021-10752-x.

Sheraton M, Deo N, Kashyap R, Surani S. A Review of Neurological Complications of COVID-19. Cureus. 12(5):e8192. DOI: 10.7759/cureus.8192.

Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020 Jul;87:18-22. DOI: 10.1016/j. bbi.2020.03.031.

Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7):995- 998. DOI: 10.1021/acschemneuro.0c00122.

Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM. Neurologic Alterations Due to Respiratory Virus Infections. Front Cell Neurosci. 2018;12:386. DOI: 10.3389/fncel.2018.00386.

Steardo L, Steardo LJr, Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiol (Oxf). 2020 Jul;229(3):e13473. DOI: 10.1111/ apha.13473.

Desforges M, Coupanec AL, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses. 2019;12(1):14. DOI: 10.3390/v12010014

Perlman S, Zhao J. Roles of regulatory T cells and IL-10 in virus-induced demyelination. J Neuroimmunol. 2017 Jul 15;308:6-11. DOI:10.1016/j.jneuroim.2017.01.001.

Monaco S, Nicholas R, Reynolds R, Magliozzi R. Intrathecal Inflammation in Progressive Multiple Sclerosis. Int J Mol Sci. 2020 Nov 3;21(21):8217. DOI: 10.3390/ijms21218217.

Rodríguez-Lorenzo S, Konings J, van der Pol S, Kamermans A, Amor S, van Horssen J, et al. Inflammation of the choroid plexus in progressive multiple sclerosis: accumulation of granulocytes and T cells. Acta Neuropathol Commun. 2020;8(1):9. DOI: 10.1186/s40478-020-0885-1

Haas J, Rudolph H, Costa L, Faller S, Libicher S, Würthwein C, et al. The Choroid Plexus Is Permissive for a Preactivated Antigen-Experienced Memory B-Cell Subset in Multiple Sclerosis. Front Immunol. 2021;11:618544. DOI: 10.3389/fimmu.2020.618544

Bellucci G, Ballerini C, Mechelli R, Bigi R, Rinaldi V, Reniè R, et al. SARS-CoV-2 meta-interactome suggests disease-specific, autoimmune pathophysiologies and therapeutic targets. F1000Research. 2020;9:992. DOI: 10.12688/f1000research.25593.1

Annibali V, Mechelli R, Romano S, Buscarinu MC, Fornasiero A, Umeton R, et al. IFN-β and multiple sclerosis: from etiology to therapy and back. Cytokine Growth Factor Rev. 2015;26(2):221-228. DOI: 10.1016/j.cytogfr.2014.10.010

Severa M, Farina C, Salvetti M, Coccia EM. Three Decades of Interferon-β in Multiple Sclerosis: Can We Repurpose This Information for the Management of SARS-CoV2 Infection?. Front Immunol. 2020;11:1459. DOI: 10.3389/fimmu.2020.01459

Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181(5):1036-1045.e9. DOI: 10.1016/j. cell.2020.04.026

Acharya D, Liu G, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol. 2020;20(7):397-398. DOI: 10.1038/s41577-020-0346-x

Lima M, Siokas V, Aloizou A-M, Liampas I, Mentis A-FA, Tsouris Z, et al. Unraveling the Possible Routes of SARS-COV-2 Invasion into the Central Nervous System. Curr Treat Options Neurol. 2020;22(11):37. DOI: 10.1007/s11940-020-00647-z

Matschke J, Lütgehetmann M, Hagel C, Sperhake JP, Schröder AS, Edler C, et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol. 2020;19(11):919-929. DOI: 10.1016/S1474-4422(20)30308-2.

Racke MK, Drew PD. Toll-like receptors in multiple sclerosis. Curr Top Microbiol Immunol. 2009;336:155- 168. DOI: 10.1007/978-3-642-00549-7_9.

Khanmohammadi S, Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. J MedVirol. 2021;93(5):2735-2739. DOI: 10.1002/jmv.26826.

Kamel WA, Ismail II, Al-Hashel JY. Guillain-Barre syndrome following COVID-19 infection: firstcase report from Kuwait and review of the literature. Dubai Med J. 2021;18:1-5.

Pilotto A, Cristillo V, Piccinelli SC, Zoppi N, Bonzi G, Sattin D, et al. Long-term neurological manifestations of COVID-19: prevalence and predictive factors. Neurol Sci. 2021 Dec;42(12):4903-4907. DOI: 10.1007/ s10072-021-05586-4. 28.

Jesuthasan A, Massey F, Manji H, Zandi MS, Wiethoff S. Emerging potential mechanisms and predispositions to the neurological manifestations of COVID-19. J Neurol Sci. 2021 Sep 15;428:117608. DOI: 10.1016/j.jns.2021.117608

WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data [Internet]. [cited 2022 Jan 6]. Available from:

Zayachkivska O, Chevtchik O. OPPORTUNITIES FOR SCIENCE GROWTH AMIDST THE COVID-19 PANDEMIC. Proc Shevchenko Sci Soc Med Sci [Internet]. 2021Jun.10;64(1). DOI: https://doi. org/10.25040/ntsh2021.01.01

Abstract views: 89
PDF Downloads: 65
How to Cite
Bozhenko N, Shorobura M, Paenok A, Lapovets L, Nehrych T. DEMYELINATING DISEASE AFTER COVID-19 INFECTION. Proc Shevchenko Sci Soc Med Sci [Internet]. 2022Jun.27 [cited 2022Oct.7];66(1). Available from: