SPIKE PROTEIN AND ITS PROTEASES ROLE IN SARS-COV-2 PATHOGENICITY AND TREATMENT; A REVIEW

  • Fateme Tavakoli Far Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran https://orcid.org/0000-0002-1783-0460
  • Ehsan Amiri-Ardekani Department of Phytopharmaceuticals (Traditional Pharmacy), Faculty of Pharmacy, Shiraz University of Medical Sciences. Student Research Committee, Shiraz University of Medical Sciences. Student Association of Indigenous Knowledge, Shiraz University of Medical Sciences, Shiraz, Iran https://orcid.org/0000-0001-8948-9153
Keywords: SARS-CoV-2, COVID-19, ACE2, Spike protein, TMPRSS2, Furin

Abstract

Since December 2019, a novel beta coronavirus has spread around the world. This virus can cause severe acute respiratory syndrome (SARS). In this study, we reviewed proteases of SARS-CoV-2 based on related articles published in journals indexed by Scopus, PubMed, and Google Scholar from December 2019 to April 2020.  Based on this study, we can claim that this coronavirus has about 76% genotype similarity to SARS coronavirus (SARS-CoV). Also, similarities between these two viruses have been found in the mechanism of entry into host cells and pathogenicity. ACE 2, the angiotensin convertase enzyme 2, plays a role in the Renin-Angiotensin-Aldosterone system (RAAS) and blood pressure regulation. Some mechanisms have been reported for the role of ACE 2 in the pathogenicity of SARS-CoV-2.  For example, the interaction between the ACE 2 receptor and spike protein mediated by TMPRSS2, Cathepsin B/L, and other enzymes is responsible for the entry of the virus into human cells and pathogenicity. Some host cell endosomal enzymes are necessary to cleavage coronavirus spike protein and cause binding to their common receptor. So, we conclude that molecules like antibodies or small molecules like ACE 2 antagonists and soluble ACE 2 can be used as a good therapeutic candidate to prevent SARS-CoV-2.

Downloads

Download data is not yet available.

References

Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10(5):766-88.

https://doi.org/10.1016/j.apsb.2020.02.008

Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102-8.

https://doi.org/10.1016/j.jpha.2020.03.001

Gioia M, Ciaccio C, Calligari P, De Simone G, Sbardella D, Tundo G, et al. Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Biochem Pharmacol. 2020;182:114225.

https://doi.org/10.1016/j.bcp.2020.114225

Matsuyama S, Nao N, Shirato K, Kawase M, Saito S, Takayama I, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci. 2020;117(13):7001-3.

https://doi.org/10.1073/pnas.2002589117

Coutard B, Valle C, de Lamballerie X, Canard B, Seidah N, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742.

https://doi.org/10.1016/j.antiviral.2020.104742

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-80.

https://doi.org/10.1016/j.cell.2020.02.052

Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-92.e6.

https://doi.org/10.1016/j.cell.2020.02.058

Armstrong J, Niemann H, Smeekens S, Rottier P, Warren G. Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus. Nature. 1984;308(5961):751-2.

https://doi.org/10.1038/308751a0

Boopathi S, Poma AB, Kolandaivel P. Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. J Biomol Struct Dyn. 2020:1-10.

https://doi.org/10.1080/07391102.2020.1758788

de Haan CAM, Kuo L, Masters PS, Vennema H, Rottier PJM. Coronavirus Particle Assembly: Primary Structure Requirements of the Membrane Protein. J Virol. 1998;72(8):6838-50.

https://doi.org/10.1128/JVI.72.8.6838-6850.1998

Woo PCY, Huang Y, Lau SKP, Yuen K-Y. Coronavirus Genomics and Bioinformatics Analysis. Viruses. 2010;2(8):1804-20.

https://doi.org/10.3390/v2081803

Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2020.

https://doi.org/10.1016/j.jmii.2020.03.022

Godet M, L'Haridon R, Vautherot J-F, Laude H. TGEV corona virus ORF4 encodes a membrane protein that is incorporated into virions. Virology. 1992;188(2):666-75.

https://doi.org/10.1016/0042-6822(92)90521-P

Nieto-Torres JL, DeDiego ML, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, et al. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014;10(5):e1004077.

https://doi.org/10.1371/journal.ppat.1004077

van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, et al. Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans. mBio. 2012;3(6):e00473-12.

https://doi.org/10.1128/mBio.00473-12

Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A Transmembrane Serine Protease Is Linked to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry. J Virol. 2011;85(2):873-82.

https://doi.org/10.1128/JVI.02062-10

Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R, Nunneley JW, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 2015;116:76-84.

https://doi.org/10.1016/j.antiviral.2015.01.011

Khan MKA, Pokharkar NB, Al-Khodairy FM, Al-Marshad FM, Arif JM. Structural Perspective on Molecular Interaction of IgG and IgA with Spike and Envelope Proteins of SARS-CoV-2 and Its Implications to Non-Specific Immunity. Biointerface Res Appl Chem. 2020:10923-39.

https://doi.org/10.33263/BRIAC113.1092310939

Johari YB, Jaffé SRP, Scarrott JM, Johnson AO, Mozzanino T, Pohle TH, et al. Production of trimeric SARS-CoV-2 spike protein by CHO cells for serological COVID-19 testing. Biotechnol Bioeng. 2021;118(2):1013-21.

https://doi.org/10.1002/bit.27615

Hargett AA, Renfrow MB. Glycosylation of viral surface proteins probed by mass spectrometry. Curr Opin Virol. 2019;36:56-66.

https://doi.org/10.1016/j.coviro.2019.05.003

Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020.

https://doi.org/10.1016/j.bbrc.2020.02.071

Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol. 2016;3(1):237-61.

https://doi.org/10.1146/annurev-virology-110615-042301

Liu Z, Xiao X, Wei X, Li J, Yang J, Tan H, et al. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J Med Virol. 2020;92(6):595-601.

https://doi.org/10.1002/jmv.25726

Cannalire R, Stefanelli I, Cerchia C, Beccari AR, Pelliccia S, Summa V. SARS-CoV-2 Entry Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. Int J Mol Sci. 2020;21(16):5707.

https://doi.org/10.3390/ijms21165707

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4.

https://doi.org/10.1038/nature02145

Jaimes JA, André NM, Millet JK, Whittaker GR. Structural modeling of 2019-novel coronavirus (nCoV) spike protein reveals a proteolytically-sensitive activation loop as a distinguishing feature compared to SARS-CoV and related SARS-like coronaviruses. bioRxiv. 2020:2020.02.10.942185.

https://doi.org/10.1101/2020.02.10.942185

Cheng J, Zhao Y, Xu G, Zhang K, Jia W, Sun Y, et al. The S2 Subunit of QX-type Infectious Bronchitis Coronavirus Spike Protein Is an Essential Determinant of Neurotropism. Viruses. 2019;11(10):972.

https://doi.org/10.3390/v11100972

de Groot RJ, Luytjes W, Horzinek MC, van der Zeijst BAM, Spaan WJM, Lenstra JA. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J Mol Biol. 1987;196(4):963-6.

https://doi.org/10.1016/0022-2836(87)90422-0

Davidson AM, Wysocki J, Batlle D. Interaction of SARS-CoV-2 and other Coronavirus with ACE (Angiotensin-Converting Enzyme)-2 as their main receptor: therapeutic implications. Hypertension. 2020;76(5):1339-49.

https://doi.org/10.1161/HYPERTENSIONAHA.120.15256

Jamwal S, Gautam A, Elsworth J, Kumar M, Chawla R, Kumar P. An updated insight into the molecular pathogenesis, secondary complications and potential therapeutics of COVID-19 pandemic. Life Sci. 2020;257:118105.

https://doi.org/10.1016/j.lfs.2020.118105

Abraham S, Kienzle TE, Lapps W, Brian DA. Deduced sequence of the bovine coronavirus spike protein and identification of the internal proteolytic cleavage site. Virol J. 1990;176(1):296-301.

https://doi.org/10.1016/0042-6822(90)90257-R

Cheng Y-W, Chao T-L, Li C-L, Chiu M-F, Kao H-C, Wang S-H, et al. Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell reports. 2020;33(2):108254.

https://doi.org/10.1016/j.celrep.2020.108254

Luytjes W, Sturman LS, Bredenbee PJ, Charite J, van der Zeijst BAM, Horzinek MC, et al. Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology. 1987;161(2):479-87.

https://doi.org/10.1016/0042-6822(87)90142-5

Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, et al. SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020;30(10).

https://doi.org/10.1101/2020.03.13.991455

Jamwal S, Gautam A, Elsworth J, Kumar M, Chawla R, Kumar P. An updated insight into the molecular pathogenesis, secondary complications and potential therapeutics of COVID-19 pandemic. Life sciences. 2020:118105.

https://doi.org/10.1016/j.lfs.2020.118105

Müller WE, Neufurth M, Schepler H, Wang S, Tolba E, Schröder HC, et al. The biomaterial polyphosphate blocks stoichiometric binding of the SARS-CoV-2 S-protein to the cellular ACE2 receptor. Biomater Sci. 2020;8(23):6603-10.

https://doi.org/10.1039/D0BM01244K

Sanchis-Gomar F, Lavie CJ, Perez-Quilis C, Henry BM, Lippi G, editors. Angiotensin-Converting Enzyme 2 and Antihypertensives (Angiotensin Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors) in Coronavirus Disease 2019. Mayo Clin Proc; 2020: Elsevier.

https://doi.org/10.1016/j.mayocp.2020.03.026

Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;181(4): 905-13.e7.

https://doi.org/10.1016/j.cell.2020.04.004

Vieira Braga FA, Kar G, Berg M, Carpaij OA, Polanski K, Simon LM, et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med. 2019;25(7):1153-63.

https://doi.org/10.1038/s41591-019-0468-5

Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight. 2016;1(20):e90558-e.

https://doi.org/10.1172/jci.insight.90558

Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K, Sata T, et al. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc Natl Acad Sci. 2008;105(22):7809.

https://doi.org/10.1073/pnas.0711241105

Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112-6.

https://doi.org/10.1038/nature03712

Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-9.

https://doi.org/10.1038/nm1267

Gracia-Ramos AE. Is the ACE2 Overexpression a Risk Factor for COVID-19 Infection? Arch Med Res. 2020;51(4):345-6.

https://doi.org/10.1016/j.arcmed.2020.03.011

[The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 2020;41(2):145-51.

Baughn LB, Sharma N, Elhaik E, Sekulic A, Bryce AH, Fonseca R, editors. Targeting TMPRSS2 in SARS-CoV-2 infection. Mayo Clin Proc; 2020: Elsevier.

https://doi.org/10.1016/j.mayocp.2020.06.018

Singh O, Bhardwaj P, Kumar D. Association between climatic variables and COVID-19 pandemic in National Capital Territory of Delhi, India. Environ Dev Sustain. 2020:1-15.

https://doi.org/10.1007/s10668-020-01003-6

Ghosh S, Klein RS. Sex Drives Dimorphic Immune Responses to Viral Infections. Journal of immunology (Baltimore, Md : 1950). 2017;198(5):1782-90.

https://doi.org/10.4049/jimmunol.1601166

Bukowska A, Spiller L, Wolke C, Lendeckel U, Weinert S, Hoffmann J, et al. Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Exp Biol Med. 2017;242(14):1412-23.

https://doi.org/10.1177/1535370217718808

Tukiainen T, Villani A-C, Yen A, Rivas MA, Marshall JL, Satija R, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550(7675):244-8.

https://doi.org/10.1038/nature24265

Sinha S, Cheng K, Aldape K, Schiff E, Ruppin E. Systematic cell line-based identification of drugs modifying ACE2 expression. 2020.

https://doi.org/10.20944/preprints202003.0446.v1

Shirato K, Kawase M, Matsuyama S. Middle East Respiratory Syndrome Coronavirus Infection Mediated by the Transmembrane Serine Protease TMPRSS2. J Virol. 2013;87(23):12552-61.

https://doi.org/10.1128/JVI.01890-13

Ou T, Mou H, Zhang L, Ojha A, Choe H, Farzan M. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog. 2021;17(1):e1009212.

https://doi.org/10.1371/journal.ppat.1009212

Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus research. 2015;202:120-34.

https://doi.org/10.1016/j.virusres.2014.11.021

Halfon S, Baird T, Craik C. Trypsin, handbook of proteolytic enzymes. Cysteine, Serine and Threonine Peptidases; 2004.

Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181(4):894-904. e9.

https://doi.org/10.1016/j.cell.2020.03.045

van Spronsen FJ, Bijleveld CM, van Maldegem BT, Wijburg FA. Hepatocellular carcinoma in hereditary tyrosinemia type I despite 2-(2 nitro-4-3 trifluoro-methylbenzoyl)-1, 3-cyclohexanedione treatment. J Pediatr Gastroenterol Nutr. 2005;40(1):90-3.

https://doi.org/10.1097/00005176-200501000-00017

Kido H, Okumura Y, Takahashi E, Pan H-Y, Wang S, Yao D, et al. Role of host cellular proteases in the pathogenesis of influenza and influenza-induced multiple organ failure. Biochim Biophys Acta Proteins Proteom BBA-PROTEINS PROTEOM. 2012;1824(1):186-94.

https://doi.org/10.1016/j.bbapap.2011.07.001

Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. J Virol. 2019;93(6):e01815-18.

https://doi.org/10.1128/JVI.01815-18

Shirato K, Kanou K, Kawase M, Matsuyama S. Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry. J Virol. 2017;91(1):e01387-16.

https://doi.org/10.1128/JVI.01387-16

Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci. 2009;106(14):5871-6.

https://doi.org/10.1073/pnas.0809524106

Follis K, York J, Nunberg J. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology. 2006;350:358-69.

https://doi.org/10.1016/j.virol.2006.02.003

Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;71(15):732-9.

https://doi.org/10.1093/cid/ciaa237

Moussa TAA, Sabry NM. A new proposed mechanism of some known drugs targeting the sars-cov-2 spike glycoprotein using molecular docking. Biointerface Res Appl Chem. 2021;11(5):12750-60.

https://doi.org/10.33263/BRIAC115.1275012760

Blaising J, Polyak SJ, Pécheur EI. Arbidol as a broad-spectrum antiviral: an update. Antiviral Res. 2014;107:84-94.

https://doi.org/10.1016/j.antiviral.2014.04.006

Kadam RU, Wilson IA. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc Natl Acad Sci. 2017;114(2):206-14.

https://doi.org/10.1073/pnas.1617020114

Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet (London, England). 2020;395(10223):e30-e1.

https://doi.org/10.1016/S0140-6736(20)30304-4

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet (London, England). 2020;395(10224):565-74.

https://doi.org/10.1016/S0140-6736(20)30251-8

Sorrell FJ, Szklarz M, Abdul Azeez KR, Elkins JM, Knapp S. Family-wide Structural Analysis of Human Numb-Associated Protein Kinases. Structure (London, England : 1993). 2016;24(3):401-11.

https://doi.org/10.1016/j.str.2015.12.015

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71.

https://doi.org/10.1038/s41422-020-0282-0


Abstract views: 530
PDF Downloads: 228
Published
2021-04-07
How to Cite
1.
Tavakoli Far F, Amiri-Ardekani E. SPIKE PROTEIN AND ITS PROTEASES ROLE IN SARS-COV-2 PATHOGENICITY AND TREATMENT; A REVIEW. Proc Shevchenko Sci Soc Med Sci [Internet]. 2021Apr.7 [cited 2024Mar.29];64(1). Available from: https://mspsss.org.ua/index.php/journal/article/view/401