APPLICATION OF NUCLEIC ACID AMPLIFICATION TESTS IN MANAGING COVID-19 PANDEMIC

Keywords: COVID-19, detection test, PCR, LAMP

Abstract

Background. COVID-19 pandemic highlighted an importance of sensitive and specific tests that would be cost-efficient, fast and scalable. There are more than 200 COVID-19 detection tests available worldwide, with every country developing own assays. Sample collection, preparation for a test, tests itself and interpretation of results have a strong impact on the clinical value of the testing. Diversity of tests and workflows requires an analysis of their performance in clinics.

Methods. Literature review, analysis of clinical reports, online resources, public and commercial reports were used to collect information about the tests. Collected information was processed for extraction of relevant to this review information.

Results. Here we review COVID-19 detection tests that are based on amplification of nucleic acids. The tests employ polymerase chain reaction (PCR) or loop-mediated isothermal amplification (LAMP). Clinical value of the tests depends on used technologies that differ for LAMP, real-time and standard PCR methods. Diversity of sample preparation protocols, different designs of the tests, used chemistries and protocols have significant impact on performance of the tests. Tailoring of a testing workflow to available infrastructure and selection of the most efficient combination of tests and protocols for each step in a testing workflow is crucial for the success.

Conclusion. Reviewed here strong and weak sides of different tests and protocols can be of help in selection of a testing workflow for achieving maximal clinical utility.

Downloads

Download data is not yet available.

References

Genzen JR, Mohlman JS, Lynch JL, Squires MW, Weiss RL. Laboratory-Developed Tests: A Legislative and Regulatory Review. Clin Chem. 2017; 63(10):1575-1584. doi: 10.1373/clinchem.2017.275164.

https://doi.org/10.1373/clinchem.2017.275164

Clark AE, Levy J, Lee FM. Laboratory-developed test regulation and the immunocompromised patient: uncertainty ahead. Curr Opin Infect Dis. 2020; 33(4):304-311. doi: 10.1097/QCO.0000000000000659.

https://doi.org/10.1097/QCO.0000000000000659

Ravi N, Cortade DL, Ng E, Wang SX. Diagnostics for SARS-CoV-2 detection: A comprehensive review of the FDA-EUA COVID-19 testing landscape. Biosens Bioelectron. 2020; 165:112454. doi: 10.1016/j.bios.2020.112454.

https://doi.org/10.1016/j.bios.2020.112454

Paczos TA. Mounting a Regional Response to the COVID-19 Pandemic: Another Reason to "Keep" Your Lab. Arch Pathol Lab Med. 2020; Jul 10. doi: 10.5858/arpa.2020-0397-SA.

https://doi.org/10.5858/arpa.2020-0397-SA

Pan Y, Long L, Zhang D, Yuan T, Cui S, Yang P, et al. Potential False-Negative Nucleic Acid Testing Results for Severe Acute Respiratory Syndrome Coronavirus 2 from Thermal Inactivation of Samples with Low Viral Loads. Clin Chem. 2020; ;66(6):794-801. doi: 10.1093/clinchem/hvaa091

https://doi.org/10.1093/clinchem/hvaa091

Ward S, Lindsley A, Courter J, Assa'ad A. Clinical testing for COVID-19. J Allergy Clin Immunol. 2020

https://doi.org/10.1016/j.jaci.2020.05.012

(1):23-34. doi: 10.1016/j.jaci.2020.05.012. Epub 2020 May 20. DOI: 10.1016/j.jaci.2020.05.012

https://doi.org/10.1016/j.jaci.2020.05.012

Meng Y, Guo E, Liu J, Huang X, Sun C, Wu P, Chen G. Value and Challenges: Nucleic Acid Amplification Tests for SARS-CoV-2 in Hospitalized COVID-19 Patients. J Infect. 2020; 81(2):e65-e67. doi: 10.1016/j.jinf.2020.04.036.

https://doi.org/10.1016/j.jinf.2020.04.036

Zitek T. The Appropriate Use of Testing for COVID-19. West J Emerg Med. 2020; 21(3):470-472. doi: 10.5811/westjem.2020.4.47370.

https://doi.org/10.5811/westjem.2020.4.47370

Cheng MP, Papenburg J, Desjardins M, Kanjilal S, Quach C, Libman M, et al. Diagnostic Testing for Severe Acute Respiratory Syndrome-Related Coronavirus 2: A Narrative Review. Ann Intern Med. 2020; 172(11):726-734. doi: 10.7326/M20-1301.

https://doi.org/10.7326/M20-1301

Kinloch NN, Ritchie G, Brumme CJ, Dong W, Dong W, Lawson T, et al. Suboptimal biological sampling as a probable cause of false-negative COVID-19 diagnostic test results. J Infect Dis. 2020; Jun 28;jiaa370. doi: 10.1093/infdis/jiaa370.

https://doi.org/10.1093/infdis/jiaa370

Perchetti GA, Nalla AK, Huang ML, Zhu H, Wei Y, Stensland L, et al. Validation of SARS-CoV-2 detection across multiple specimen types. J Clin Virol. 2020; 128:104438. doi: 10.1016/j.jcv.2020.104438.

https://doi.org/10.1016/j.jcv.2020.104438

Callahan CJ, Lee R, Zulauf KE, Tamburello L, Smith KP, Previtera J, et al. Open Development and Clinical Validation of Multiple 3D-Printed Nasopharyngeal Collection Swabs: Rapid Resolution of a Critical COVID-19 Testing Bottleneck. J Clin Microbiol. 2020; 58(8):e00876-20. doi: 10.1128/JCM.00876-20.

https://doi.org/10.1128/JCM.00876-20

Eckel F, Küsters F, Drossel B, Konert M, Mattes H, Schopf S. Variplex™ test system fails to reliably detect SARS-CoV-2 directly from respiratory samples without RNA extraction. Eur J Clin Microbiol Infect Dis. 2020; Jul17;1-5. doi: 10.1007/s10096-020-03983-9.

https://doi.org/10.1007/s10096-020-03983-9

Fakheran O, Dehghannejad M, Khademi A. Saliva as a diagnostic specimen for detection of SARS-CoV-2 in suspected patients: a scoping review. Infect Dis Poverty. 2020; 9(1):100. doi: 10.1186/s40249-020-00728-w.

https://doi.org/10.1186/s40249-020-00728-w

Bruce EA, Huang ML, Perchetti GA, Tighe S, Laaguiby P, Hoffman JJ, et al. Direct RT-qPCR detection of SARS-CoV-2 RNA from patient nasopharyngeal swabs without an RNA extraction step. bioRxiv. 2020; Apr 6:2020.03.20.001008. doi: 10.1101/2020.03.20.001008.

https://doi.org/10.1101/2020.03.20.001008

Zhang JC, Wang SB, Xue YD. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J Med Virol. 2020; Jun;92(6):680-682. doi: 10.1002/jmv.25742.

https://doi.org/10.1002/jmv.25742

Souchelnytskyi S, Nera A, Souchelnytskyi N. COVID-19 engages clinical markers for the management of cancer and cancer-relevant regulators of cell proliferation, death, migration and immune response. Sci. Rep. 2020; SREP-20-02484.

Chan JFW, Yip CCY, To KKW, Tang THCT, Wong SCY, Leung KH, et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J Clin Microbiol. 2020; Apr 23;58(5):e00310-20. doi: 10.1128/JCM.00310-20.

https://doi.org/10.1128/JCM.00310-20

Mancini F, Barbanti F, Scaturro M, Errico G, Iacobino A, Bella A, et al. On behalf ISS COVID-19 study group. Laboratory management for SARS-CoV-2 detection: a user-friendly combination of the heat treatment approach and rt-Real-time PCR testing. Emerg Microbes Infect. 2020; Dec;9(1):1393-1396. doi: 10.1080/22221751.2020.1775500.

https://doi.org/10.1080/22221751.2020.1775500

Kannan S., Ericsson J., Souchelnytskyi S. The protocol for detection of genetic markers in saliva by polymerase chain reaction without a nucleic acid purification step: examples of COVID-19 and GAPDH markers. Virology Journal, 2020;.VRJ-D-20-00472.

Smyrlaki I, Ekman M, Lentini A, de Sousa NR, Papanicoloau N, Martin Vondracek, et al. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. MedRxiv; doi: https://doi.org/10.1101/2020.04.17.20067348

https://doi.org/10.1101/2020.04.17.20067348

Wang Y, Song W, Zhao Z, Chen P, Liu J, Li C. The impacts of viral inactivating methods on quantitative RT-PCR for COVID-19. Virus Res. 2020; Aug;285:197988. doi: 10.1016/j.virusres.2020.197988.

https://doi.org/10.1016/j.virusres.2020.197988

Wee SK, Sivalingam SP, Yap EPH. Rapid Direct Nucleic Acid Amplification Test without RNA Extraction for SARS-CoV-2 Using a Portable PCR Thermocycler. Genes (Basel). 2020; Jun 18;11(6):664. doi: 10.3390/genes11060664.

https://doi.org/10.3390/genes11060664

Lu R, Wu X, Wan Z, Li Y, Jin X, Zhang C. A Novel Reverse Transcription Loop-Mediated Isothermal Amplification Method for Rapid Detection of SARS-CoV-2. Int J Mol Sci. 2020; Apr 18;21(8):2826. doi: 10.3390/ijms21082826.

https://doi.org/10.3390/ijms21082826

Baek YH, Um J, Antigua KJC, Park JH, Kim Y, Oh S, et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerg Microbes Infect. 2020; Dec;9(1):998-1007. doi: 10.1080/22221751.2020.1756698.

https://doi.org/10.1080/22221751.2020.1756698

Yan C, Cui J, Huang L, Du B, Chen L, Xue G, et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clin Microbiol Infect. 2020; Jun;26(6):773-779. doi: 10.1016/j.cmi.2020.04.001.

https://doi.org/10.1016/j.cmi.2020.04.001

Augustine R, Hasan A, Das S, Ahmed R, Mori Y, Notomi T, et al. Loop-Mediated Isothermal Amplification (LAMP): A Rapid, Sensitive, Specific, and Cost-Effective Point-of-Care Test for Coronaviruses in the Context of COVID-19 Pandemic. Biology (Basel). 2020; Jul 22;9(8):E182. doi: 10.3390/biology9080182.

https://doi.org/10.3390/biology9080182

Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000; Jun 15; 28(12): e63. doi: 10.1093/nar/28.12.e63.

https://doi.org/10.1093/nar/28.12.e63

Lu R, Wu X, Wan Z, Li Y, Jin X, Zhang C. A Novel Reverse Transcription Loop-Mediated Isothermal Amplification Method for Rapid Detection of SARS-CoV-2. Int J Mol Sci. 2020; 21(8):2826. doi: 10.3390/ijms21082826.

https://doi.org/10.3390/ijms21082826

Tanner NA, Zhang Y, Evans TC. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. Biotechniques, 2015; 58(2):59-68. doi 10.2144/000114253.

https://doi.org/10.2144/000114253

Quyen TL, Ngo TN, Bang DD, Madsen M, Wolff A. Classification of Multiple DNA Dyes Based on Inhibition Effects on Real-Time Loop-Mediated Isothermal Amplification (LAMP): Prospect for Point of Care Setting. Front. 2019

https://doi.org/10.3389/fmicb.2019.02234

Microbiol. 15 October 2019 https://doi.org/10.3389/fmicb.2019.02234.

https://doi.org/10.3389/fmicb.2019.02234

Thi VLD, Herbst K, Boerner K, Meurer M, Kremer LP, Kirrmaier D, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020; Jul 27;eabc7075. doi: 10.1126/scitranslmed.abc7075.

https://doi.org/10.1126/scitranslmed.abc7075

Toptan T, Hoehl S, Westhaus S, Bojkova D, Berger A, Rotter B, et al. Optimized qRT-PCR Approach for the Detection of Intra- and Extra-Cellular SARS-CoV-2 RNAs. Int J Mol Sci. 2020; 21(12):4396. doi: 10.3390/ijms21124396.

https://doi.org/10.3390/ijms21124396

Ishige T, Murata S, Taniguchi T, Miyabe A, Kitamura K, Kawasaki K, et al. Highly sensitive detection of SARS-CoV-2 RNA by multiplex rRT-PCR for molecular diagnosis of COVID-19 by clinical laboratories. Clin Chim Acta. 2020; Aug;507:139-142. doi: 10.1016/j.cca.2020.04.023.

https://doi.org/10.1016/j.cca.2020.04.023

Yip CCY, Ho CC, Chan JWC, To KKW, Chan HSY, Wong SCY, et al. Development of a Novel, Genome Subtraction-Derived, SARS-CoV-2-Specific COVID-19-nsp2 Real-Time RT-PCR Assay and Its Evaluation Using Clinical Specimens. Int J Mol Sci. 2020; Apr 8;21(7):2574. doi: 10.3390/ijms21072574.

https://doi.org/10.3390/ijms21072574

Park M, Won J, Choi BY, Lee J. Optimization of primer sets and detection protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real-time PCR. Exp Mol Med. 2020; Jun;52(6):963-977. doi: 10.1038/s12276-020-0452-7.

https://doi.org/10.1038/s12276-020-0452-7

Liu X, Feng J, Zhang Q, Guo D, Zhang L, Suo T, et al. Analytical comparisons of SARS-COV-2 detection by qRT-PCR and ddPCR with multiple primer/probe sets. Emerg Microbes Infect. 2020; Dec;9(1):1175-1179. doi: 10.1080/22221751.2020.1772679.

https://doi.org/10.1080/22221751.2020.1772679

Yan Y, Chang L, Wang L. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): Current status, challenges, and countermeasures. Rev Med Virol. 2020; May;30(3):e2106. doi: 10.1002/rmv.2106.

https://doi.org/10.1002/rmv.2106

Zhifeng J, Feng A, Li T. Consistency analysis of COVID-19 nucleic acid tests and the changes of lung CT. J Clin Virol. 2020; Jun;127:104359. doi: 10.1016/j.jcv.2020.104359.

https://doi.org/10.1016/j.jcv.2020.104359

Muenchhoff M, Mairhofer H, Nitschko H, Grzimek-Koschewa N, Hoffmann D, Berger A, et al. Multicentre comparison of quantitative PCR-based assays to detect SARS-CoV-2, Germany, March 2020. Euro Surveill. 2020; Jun;25(24):2001057. doi: 10.2807/1560-7917.ES.2020.25.24.2001057.

https://doi.org/10.2807/1560-7917.ES.2020.25.24.2001057

First NGS-based COVID-19 diagnostic. Nat Biotechnol. 2020; Jul;38(7):777. doi: 10.1038/s41587-020-0608-y.

https://doi.org/10.1038/s41587-020-0608-y

Suo T, Liu X, Feng J, Guo M, Hu W, Guo D, et al. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg Microbes Infect. 2020; 9(1):1259-1268. doi: 10.1080/22221751.2020.1772678.

https://doi.org/10.1080/22221751.2020.1772678


Abstract views: 280
PDF Downloads: 161
Published
2020-09-27
How to Cite
1.
Souchelnytskyi S, Souchelnytskyi N. APPLICATION OF NUCLEIC ACID AMPLIFICATION TESTS IN MANAGING COVID-19 PANDEMIC. Proc Shevchenko Sci Soc Med Sci [Internet]. 2020Sep.27 [cited 2021Sep.18];62(2). Available from: https://mspsss.org.ua/index.php/journal/article/view/321