• T. Dumych Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  • S. Paryzhak Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  • R. Bilyy Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
Keywords: neutrophil extracellular traps; acute inflammation; IgG-IgM-containing immune complex; neutrophil elastase


Introduction. Neutrophils play an important role in the innate immune response. While patrolling the body, they find pathogens and destroy them by means of phagocytosis, degranulation, or formation of neutrophil extracellular traps (NETs). The latter process is accompanied by the release of chromatin along with granular enzymes, such as neutrophil elastase. Neutrophil-released enzymes are capable of breaking not only pathogens but also components of the host organism.

Objectives. In the current work, we investigated the NETs effect on the composition of circulating IgG-IgM immune complexes at different stages of experimental sepsis-induced in laboratory mice.

Research methods. In our study, we used an animal model of induced sepsis. The levels of circulating IgG and IgM, as well as IgG-IgM-containing immune complexes in sera were evaluated by using an enzyme-linked immunosorbent assay. Sera collected before induction of sepsis served as a negative control. Neutrophil elastase activity in serum samples was measured after adding fluorogenic neutrophil elastase substrate. NET formation was studied by staining with propidium iodide and was detected using a fluorescence microscope.

Results. It was demonstrated that under septic conditions, the level of circulating IgG does not change significantly. The content of total IgM increased rapidly immediately after sepsis induction and reached its maximum 7 days later, remaining at high levels till the end of the experiment (16 days). Unlike total IgG and IgM, IgG-IgM-containing immune complexes were formed 3 days after sepsis induction, their maximum was observed on 7-9th day and then dropped. The decrease in the amount of circulating IgG-IgM-containing immune complexes was accompanied by the enhanced level of neutrophil elastase activity (a marker of NETs formation).

Conclusions. Thus, the appearance of modified immunoglobulin complexes that are non-specific for the healthy organism in the process of acute inflammation can be initiated by NETs and released hydrolytic enzymes of neutrophil granules.

Disclosures. The authors declare no conflict of interests.

Author contribution. RB designed the study; RB, TD, SP: performed the experiments; RB, TD, SP: wrote the manuscript.


Download data is not yet available.


Asaduzzaman M., Rahman M., Jeppsson B., Thorlacius H. P-selectin glycoprotein-ligand-1 regulates pulmonary recruitment of neutrophils in a platelet-independent manner in abdominal sepsis. Br J Pharmacol. 2009;156(2):307–15.

Asaduzzaman M., Zhang S., Lavasani S., Wang Y., Thorlacius H. LFA-1 and MAC-1 mediate pulmonary recruitment of neutrophils and tissue damage in abdominal sepsis. Shock. 2008;30(3):254-9.

Biermann MHC, Griffante G., Podolska M.J., Boeltz S., Stürmer J., Muñoz L.E., Bilyy R., Herrmann M. Sweet but dangerous – the role of immunoglobulin G glycosylation in autoimmunity and inflammation. Lupus. 2016;25(8):934-42.

Bilyy R., Fedorov V., Vovk V., Leppkes M., Dumych T., Chopyak V., Schett П., Herrmann M. Neutrophil Extracellular Traps Form a Barrier between Necrotic and Viable Areas in Acute Abdominal Inflammation. Front Immunol. 2016;7:424.

Boeltz S., Amini P., Anders H.J., Andrade F., Bilyy R., Chatfield S., Cichon I., Clancy D.M., Desai J., Dumych T., Dwivedi N., Gordon R.A., Hahn J., Hidalgo A., Hoffmann M.H., Kaplan M.J., Knight J.S., Kolaczkowska E., Kubes P., Leppkes M., Manfredi A.A., Martin S.J., Maueröder C., Maugeri N., Mitroulis I., Munoz L.E., Nakazawa D., Neeli I., Nizet V., Pieterse E., Radic M.Z., Reinwald C., Ritis K, Rovere-Querini P, Santocki M, Schauer C, Schett G, Shlomchik MJ, Simon HU, Skendros P, Stojkov D, Vandenabeele P, Berghe TV, van der Vlag J, Vitkov L, von Köckritz-Blickwede M, Yousefi S, Zarbock A, Herrmann M. To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ. 2019;26(3):395–408.

Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5.

Clark S.R., Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13(4):463–9.

Dubois A. V., Gauthier A., Bréa D, Varaigne F, Diot P, Gauthier F, Attucci S. Influence of DNA on the Activities and Inhibition of Neutrophil Serine Proteases in Cystic Fibrosis Sputum. Am J Respir Cell Mol Biol. 2012;47(1):80–6.

Ehrenstein M.R., Notley CA. The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol. 2010;10(11):778–86.

Fink M.P., Warren H.S. Strategies to improve drug development for sepsis. Nat Rev Drug Discov. 2014;13(10):741-58.

Flaherty D.K. Antibodies. In: Immunology for Pharmacy. Elsevier; 2012. p. 70-8.

Futamata E., Masuda S., Nishibata Y., Tanaka S., Tomaru U., Ishizu A. Vanishing Immunoglobulins: The Formation of Pauci-Immune Lesions in Myeloperoxidase-Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Nephron. 2018;138(4):328–30.

Hasan Z., Palani K., Rahman M., Thorlacius H. Targeting CD44 expressed on neutrophils inhibits lung damage in abdominal sepsis. Shock. 2011;35(6):567–72.

Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–74. https://doi:10.1038/nri3552.

Huber C, Rüger A, Herrmann M, Krapf F, Kalden JR. C3-containing serum immune complexes in patients with systemic lupus erythematosus: correlation to disease activity and comparison with other rheumatic diseases. Rheumatol Int. 1989;9(2):59–64.

Jiménez-Alcázar M., Rangaswamy C., Panda R., Bitterling J., Simsek Y.J., Long AT, Bilyy R, Krenn V, Renné C, Renné T, Kluge S, Panzer U, Mizuta R, Mannherz HG, Kitamura D, Herrmann M, Napirei M, Fuchs TA. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 2017;358(6367):1202-6.

Kaneko Y., Nimmerjahn F, Ravetch J V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313(5787):670-3.

Knopf J., Magorivska I., Maler J.M., Spitzer P., Bilyy R., Biermann MHC, Hychka K, Bondt A, Wuhrer M, Toes REM, Schett G, Herrmann M, Muñoz LE. Low amounts of bisecting glycans characterize cerebrospinal fluid-borne IgG. J Neuroimmunol. 2018;320:19–24. doi:10.1016/j.jneuroim.2018.04.010.

Kummarapurugu AB, Afosah DK, Sankaranarayanan NV, Navaz Gangji R, Zheng S, Kennedy T, Rubin BK, Voynow JA, Desai UR. Molecular principles for heparin oligosaccharide–based inhibition of neutrophil elastase in cystic fibrosis. J Biol Chem. 2018;293(32):12480–90.

Lekstrom-Himes JA, Gallin JI. Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med. 2000;343(23):1703–14.

Lux A, Aschermann S, Biburger M, Nimmerjahn F. The pro and anti-inflammatory activities of immunoglobulin G. Ann Rheum Dis. 2010;69 Suppl 1:i92-96.

Magorivska I, Döncző B, Dumych T, Karmash A, Boichuk M, Hychka K, Mihalj M, Szabó M, Csánky E, Rech J, Guttman A, Vari SG, Bilyy R. Glycosylation of random IgG distinguishes seropositive and seronegative rheumatoid arthritis. Autoimmunity. 2018;51(3):111–7.

Marcello A., Wirths O, Schneider-Axmann T, Degerman-Gunnarsson M, Lannfelt L, Bayer TA. Circulating immune complexes of Abeta and IgM in plasma of patients with Alzheimer’s disease. J Neural Transm. 2009;116(7):913–20.

Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218.

McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12(3):324–33.

Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 2006;6(3):173–82.

Nauseef WM. How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev. 2007;219:88–102.

Nowak J.E., Harmon K., Caldwell CC, Wong HR. Prophylactic zinc supplementation reduces bacterial load and improves survival in a murine model of sepsis. Pediatr Crit Care Med. 2012;13(5):e323-9.

Nozu, R., Ueno, M., Hayashimoto, N. Composition of fecal microbiota of laboratory mice derived from Japanese commercial breeders using 16S rRNA gene clone libraries. The Journal of Veterinary Medical Science. 2016;78(6):1045–50.

Papayannopoulos V., Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol. 2009;30(11):513–21.

Parker K.D., Albeke SE, Gigley JP, Goldstein AM, Ward NL. Microbiome Composition in Both Wild-Type and Disease Model Mice Is Heavily Influenced by Mouse Facility. Front Microbiol. 2018;9.

Paryzhak S., Dumych T., Mahorivska I., Boichuk M., Bila G., Peshkova S., Nehrych T., Bilyy R. Neutrophil-released enzymes can influence composition of circulating immune complexes in multiple sclerosis. Autoimmunity. 2018;1–7.

Podolska M.J., Mahajan A., Knopf J., Hahn J., Boeltz S., Munoz L, Bilyy R, Herrmann M. Autoimmune, rheumatic, chronic inflammatory diseases: Neutrophil extracellular traps on parade. Autoimmunity. 2018;51(6):281–7.

Poskitt T.R., Poskitt P.K. Thrombocytopenia of sepsis. The role of circulating IgG-containing immune complexes. Arch Intern Med. 1985;145(5):891–4.

Racine R., Winslow G.M. IgM in microbial infections: taken for granted? Immunol Lett. 2009;125(2):79–85.

Rello J, Valenzuela-Sánchez F, Ruiz-Rodriguez M, Moyano S. Sepsis: A Review of Advances in Management. Adv Ther. 2017;34(11):2393–411.

Saffarzadeh M, Juenemann C, Queisser MA, Lochnit G, Barreto G, Galuska SP, Lohmeyer J, Preissner KT. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One. 2012;7(2):e32366.

Scanlan CN, Burton DR, Dwek RA. Making autoantibodies safe. Proc Natl Acad Sci USA. 2008/03/18. 2008;105(11):4081–2.

Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, Lell M, Manger B, Rech J, Naschberger E, Holmdahl R, Krenn V, Harrer T, Jeremic I, Bilyy R, Schett G, Hoffmann M, Herrmann M. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20(5):511–7.

Shen X-F, Cao K, Jiang J-P, Guan W-X, Du J-F. Neutrophil dysregulation during sepsis: an overview and update. J Cell Mol Med. 2017;21(9):1687–97.

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent J-L, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10.

Sjöwall C, Zapf J, von Löhneysen S, Magorivska I, Biermann M, Janko C, Winkler S, Bilyy R, Schett G, Herrmann M, Muñoz LE. Altered glycosylation of complexed native IgG molecules is associated with disease activity of systemic lupus erythematosus. Lupus. 2015;24(6):569–81.

Stortz, J. A., Raymond, S. L., Mira, J. C., Moldawer, L. L., Mohr, A. M., Efron, P. A. Murine Models of Sepsis and Trauma: Can We Bridge the Gap? ILAR Journal. 2017;58(1): 90–105.

Tachovsky T.G., Koprowski H., Lisak R.P., Theofilopoulos AN, Dixon FJ. Circulating immune complexes in multiple sclerosis and other neurological diseases. Lancet. 1976;308(7993):997–9.

Toong C, Adelstein S, Phan TG. Clearing the complexity: immune complexes and their treatment in lupus nephritis. Int J Nephrol Renovasc Dis. 2011;4:17–28.

Vincent J-L, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: time for change. Lancet (London, England). 2013;381(9868):774–5.

Abstract views: 316
PDF Downloads: 178 PDF Downloads: 0
How to Cite